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            In this study, Artificial Neural Network is employed to develop a model to predict amine contactor 
column output variables of Gachsaran natural gas sweetening plant. The developed model is evaluated by 
process operating data of the natural gas refinery that was simulated by commercial Aspen Hysis simulator and 
was validated by field data. The simulation results are implemented as inputs and target outputs for ANN 
model. A set of 4 input and 1 output plant data each consisting of 120 data has been used to train, validate, and 
test the model. Model development that consists of training, optimization and test was performed using 
randomly selected 70%, 15%, and 15%of available data respectively. Model estimations are compared with 
data obtained from simulation based models. Test results showed a good agreement between predicted and 
observed operating plant data (R2= 0.9779) that indicated ANN can be a reliable accurate estimation method for 
amine absorbing column. 

 © 2015 JMSSE All rights reserved 

 
Introduction 

 

    About  33%  of  the  world’s  natural  gas  reserves  are  

discovered  in  offshore fields and 40 % of the natural gas reserves 

are  sour or acid, containing large quantities of CO2 and H2S and 

other sulfur compounds. To realize its value it has to be brought 

onshore, to be processed to the required specification and send to 

distribution networks. Lack of means to bring stranded natural gas 

to the market leads to increase of remotely located natural gas 

reserves, flaring and re-injection of associated gas  from  offshore  

fields  [1-2].   
 

    Flaring of associated gas has become an environmental issue 

with high degree of focus among approving authorities and oil 

companies. Handling of associated gas for oil developments has 

become a more critical issue than before. Therefore, this has led 

the oil and gas industry to seek solutions that can handle the 

associated gas in an acceptable manner both economically and 

environmentally. The Iranian offshore oil company (IOOC) is 

planning for the expansion of the existing onshore Sirri Island 

complex located in the South East of Sirri Island in the Persian 

Gulf, Iran. The Sirri Island Gas Gathering and NGL Recovery 

Project involves expansion of existing reception facilities and the 

addition of new gas & condensate transmission lines, gas 

compression and processing facilities, with associated utilities. 
 

    There are several treating processes available for H2S removal 

from natural gas. Some of these processes use chemical, physical, 

and hybrid solvents while few others using physical separation by 

special membranes [3]. 
 

    Among the addressed methods, alkanolamines for sweetening 

have been employed widely. The alkanolamine aqueous solutions 

are capable of absorbing impurities such as hydrogen sulfide and 

carbon dioxide from natural gas. [4]As the degree of the gas 

acidity increases, the energy required by the process to achieve 

sweet gas specifications in terms of H2S and CO2 concentrations 

will increase.[5] This is particularly true for gas sweetening 

processes using alkanolamine solvents such as the primary amine: 

methyl-ethanolamine (MEA), the secondary amines: 

diethanolamine (DEA) and di-iso-propanolamine (DIPA), and the 

tertiary amines: triethanolamine (TEA) and methyldiethanolamine 

(MDEA). Many recent researches have focused on investigating 

the mixing of different amine solvents [6-9].  
 

    In the past few years, mixed amine solvents for the removal of 

acid gases have received increased attention. [6] Application of 

mixtures of alkanolamines, a solution of two or more amines in 

varying concentration, has been shown to produce absorbents with 

excellent absorption characteristics Reliable accurate models of gas 

sweetening processes allows one to optimize operating conditions 

thus minimizing operational costs. This is a necessity due to 

inherent seasonal variations in feed stream and temperature. 

Attempts to develop such models include those that are based basic 

principles and those that are data-based using input/output plant 

data [10]. Models based on detailed mass and energy balance 

equations proved to be very complicated and hard to solve 

especially when coupled with optimization computer routines [11]. 
 

    Traditional approaches of solving chemical engineering 

problems frequently have their limitations, as for example in the 

modeling of highly complex and nonlinear systems. Artificial 

neural networks (ANN) have proved to be able to solve complex 

tasks in a number of practical applications that should be of interest 

to you as a chemical engineer [12]. (ANN) represent one of the 

fastest developing fields of artificial intelligence due to their ability 

to resemble (to a certain extent) the human problem solving 

characteristic, which is difficult to simulate using the logical, 

analytical techniques of expert system and standard software 

technologies. The wide applicability of ANNs stems from their 

flexibility and ability to model linear and nonlinear systems 

without prior knowledge of an empirical model. This gives ANNs 
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an advantage over traditional fitting methods for some chemical 

applications [13].  
 

    In this paper, we will try to apply ANN as a prediction tools to 

estimate amine contactor column output. The investigated process 

is carried out in Gachsaran gas sweetening plant. To do so, the 

process will be simulated by commercial Aspen Hysis simulator 

and will be validated by field data. The simulation results will be 

implemented as inputs and target outputs for ANN model. 

 
Experimental 
 

Methods 

Acid gas removal unit 
 

    In the gas processing industry absorption with chemical solvents 

has been used commerc-ially for the removal of acid gas impurities 

from natural gas. Alkanolamines are the most commonly used 

category of chemical solvents for acid gas capture. In Siri Island 

NGL project, the Acid Gas Removal unit will treat approximately 

143.4 to 143.0 MMSCFD (summer and winter cases) of gas 

containing approximately 4.12% CO2 and up to 240 ppm of H2S. A 

generic MDEA solution, at 50 wt% strength, is used to sweeten the 

gas and reduce the CO2 content to below 2%. 
 

    Sour gas is first passed through an Inlet Gas Filter/Coalescer to 

remove any liquid or particulate contamination, before passing 

through the Amine Contactor. The Inlet Gas Filter/Coalescer is a 

vertical vessel comprised of upper and lower chambers, separated 

by a tube sheet. The Gas first enters the lower chamber, for bulk 

liquid removal, and then the upper chamber, through the tube sheet 

and the coalescing filter elements. The flow through the coalescing 

elements is inside�out. The coalescing filter elements will remove 

both solids and liquid droplets that are 0.3 microns and larger. 

Liquid droplets coalesce and grow in size in the elements, descend 

via gravity, and are collected and removed, at the bottom of the 

upper chamber. At the same time, the solid particles removed from 

the gas are swept out of the element by the downward liquid 

drainage from the elements. 
 

    This plant uses the process of chemisorptions to remove H2S, 

and other acid gases, such as Carbon Dioxide (CO2), from the raw 

gas stream. Chemisorption is a two-step process involving both 

absorption and chemical reaction. An aqueous amine solution, at a 

concentration of 50 weight percent, is used to sweeten the raw gas. 

This solution contains water into which the gases dissolve, and 

formulated solvent, containing the basic tertiary amine, n-methyl 

diethanol amine (MDEA), with which the acid gases chemically 

react. Sour raw gas introduced into the bottom of the tower and is 

passed, counter current to lean amine solvent, through the Amine 

Contactor. Gas leaving the topmost tray of the amine contactor 

should have less than 2 ppm H2S and less than 2% CO2 before it 

proceeds on to the sweet gas cooler. 
 

    The amine contactor is a trayed absorption column containing 

single-pass valve trays. The three topmost trays are water-wash 

trays used to scrub any entrained amine solution from the exiting 

gas. The lower trays, promote mass transfer between the aqueous 

amine solution and the sour gas. The bottom of the tower, directly 

below the seal pan of the bottommost tray, provides some surge 

capacity. 
 

    Lean amine is fed to top section of the amine contactor, and 

flows down the column to be collected in the surge section. A 

lower lean amine feed point will increase the amount of CO2 in the 

sales gas stream, and reduce the amount of stripping energy 

required. Amine in the surge section is rich and must be 

regenerated before it is reused. 
 

    Demineralized water is fed to the topmost tray, Tray #1, and 

blends into the amine solution flowing down the column. This 

sweet gas passes through the sweet gas cooler (11-A-101), where 

the temperature is reduced to 55oC. 
 

    This will condense water from the gas stream prior to entering 

the molecular sieve dehydration unit and reduce the load on the 

dehydration system. If the stream is cooled too much some of the 

hydrocarbons will start to condense and reduce the product 

recovery. If the temperature is too warm the water loading on the 

molecular sieve dehydration unit will be increased and water 

breakthrough could possibly occur. 
  

    The 2-phase stream from the sweet gas cooler is separated in the 

sweet gas scrubber (11-D-101), to remove the free liquid from the 

gas stream. The gas flows upward through a wire mesh mist 

eliminator where liquid droplets greater than 10 microns are 

removed and flows to the Sweet Gas Filter/Coalescer. The liquid is 

level controlled and flows to the closed drain tank.  
 

    Rich amine is collected, at the bottom of the amine contactor, 

and flashed down to near 6 Bara. The flashed gases and amine 

enter the Flash Tank (11-D-102), to allow the release of absorbed 

hydrocarbon gases and the separation of absorbed hydrocarbon 

liquids. The vapour is back pressure controlled and flows to the 

acid gas incinerator (19-X-101). 
 

    The rich amine flows through a particle filter (11-F-102 A/B) to 

remove solid impurities before a slip-stream flows through an 

activated carbon filter (11-F-103) to remove residual hydrocarbons 

in the rich amine. Before being fed to the top tray of the amine 

regenerator, the stream is preheated in the rich/lean heat exchanger 

(11-E-101). 
 

    The amine sweetening process involves an acid-base reaction 

between acid gases and amine. In order to reverse this chemical 

reaction, pressures are decreased and temperatures are increased, 

thus liberating the acid gases (H2S and CO2) and regenerating the 

amine solution. Regeneration is accomplished using the Amine 

Regenerator (11-C-102), Amine reboiler (11-E-102), and 

associated reflux equipment.  
 

    The amine regenerator is a trayed distillation tower equipped 

with valve trays. Rich amine enters the tower, flows down through 

the trays, and is collected in the surge section of the tower, before 

flowing to the Amine Reboiler. Reflux is returned to the tower, on 

the topmost tray, Tray #1. Hot vapours, from the reboiler, enter the 

tower’s surge section and flow upward, counter current to the 

amine, and exit the tower, overhead. During normal operation, the 

liquid level, in the surge section of the tower, is determined by the 

weir height in the reboiler and the liquid and vapour hydraulics. 

The Amine Reboiler is a horizontal kettle reboiler designed to 

provide the duty required to drive the stripping in the Amine 

Regenerator. Amine is fed into the shell side and LP steam flows 

through the tubes. The shell is divided into two compartments by a 

weir. In the inlet compartment, heat is transferred from the steam 

to boil the incoming amine. The boiled vapour is routed back to the 

surge section of the Amine Regenerator and will travel up through 

the tower's trays. Lean amine, in equilibrium with the boiled 

vapour, will overflow the weir, into the reboiler's downstream 

compartment.  
 

    This lean amine will be cooled by the Lean/Rich Amine Heat 

Exchanger (11-E-101) and sent to the Lean Amine Surge Tank 

(11-T-101).Temperature control is achieved by changing the flow 

rate of the heat transfer medium. Pressure, in the Amine Reboiler, 

is controlled by increasing or decreasing the back pressure on the 

regeneration system. The amine regeneration reflux circuit consists 

of: the amine reflux condenser (11-A-102), the amine reflux 

accumulator (11-D-103), and the amine reflux pumps (11-P-

103A/B). 
 

    The amine reflux condenser is a forced-draft air cooler used to 

cool the amine regenerator overhead vapours. This cooler is 
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equipped with variable pitch fan blades and automatic louvers on 

the air outlet and for temperature control. The cooled acid gases 

and condensed water enter the amine reflux accumulator. The 

water/acid-gas mixture temperature must be controlled near its set 

point. 
 

    If the mixture is over-cooled, the cold water will quench the 

amine regenerator and increase reboiler duty. If the mixture leaving 

the amine reflux condenser is too hot, the acid gas fed to the Acid 

Gas Incinerator will have more water. More water in the acid gas 

will increase the water make-up requirements of the amine system 

and increase the fuel gas requirements of the acid gas incinerator. 
 

    The amine reflux accumulator is a vertical separator. During 

normal operation, the liquid is pumped back to the amine 

regenerator as reflux. The vapour is back pressure controlled and 

flows to the acid gas incinerator. Figure 1 shows PFD diagram of 

the sweetening unit. 

 

 

Simulation and Optimization 
 

    Simulation is done using amine package with Kent Eisenberg’s 

thermodynamic Model for aqueous amine solutions and non ideal 

vapor phase model. The input gas composition for base model can 

be found in table 1. 
 

Table 1: Feed Gas Composition for base model 
 

 

Feed 

 

Mole 

Fraction % 

 

Feed 

 

Mole Fraction % 

MDEA 0 CH4S 0.00040894 

Methane 71.2449 COS 9.53E-05 

Ethane 11.5462 P-C6* 0.30987 

Propane 7.23941 P-C7* 0.14999 

Isobutane 1.224 P-C8* 0.0638791 

n-Butane 2.1139 P-C9* 0.015633 

Isopentane 0.56633 P-C10* 0.0034371 

n-Pentane 0.55066 P-C11* 0.00073686 

Hexane 0.017739 P-C12* 0.00011709 

Water 0.22848 P-C13* 5.81E-05 

Nitrogen 0.58282 P-C14* 5.93E-06 

Carbon Dioxide 4.1173 P-C15* 6.56E-07 

Hydrogen Sulfide 0.024006 P-C16* 9.50E-08 
 

    The aim of this workis to prepare an estimation model in order 

to predict the effect of feed gas flow rate, amine flow rate, feed gas 

and feed gas composition (H2S%) on amine absorber column 

outputs. Therefore, process validation and optimization have been 

done by comparing simulation rsults and field data. After the 

model validation, lots of simulations have been performed to 

investigate the addresed parameters effect on absorber column. 

 

ANN Model 
 

    The ANNs have the potential of enhancing our knowledge of 

prediction issues. Artificial neural networks can be adopted in a 

variety of applications like prediction and optimization and 

prediction. Performing non-linear, multidimensional interpolations 

between input and output parameters makes it possible to identify 

non-linear relationships that exist between input and output. 
 

     

 

 

    Generally, neural networks consist of neuron layers which 

perform calculations. A neuron layer  includes the combination of 

the weights, the multiplication and summing operation, the bias b, 

the transfer function f, a net input vector ξ and an output vector a. 

The inputs vector is not involved in a layer. Each  neuron  in  a  

particular  layer  is  connected with  all  neurons  in  the  next  

layer. The connection between neurons is characterized by the 

weight coefficients. The weight coefficient reflects the degree of 

importance  of the given connection in the neural network. The 

output value of the ith neuron is determined by equations (1) and 

(2).  It holds that: 

 

𝜉𝑖 = 𝑏𝑖 +  𝑊𝑖,𝑗 ∗ 𝑋𝑗

𝑅

𝑗=1

                                                                (1) 

 
𝑎𝑖 = 𝑓 𝜉𝑖                                                                                        (2) 

 

    Where the first index indicates the particular neuron destination 

for the weight and the second index indicates the source of the 

Figure 1: PFD of the Amine Sweetening Unit 
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signal fed to the neuron. ξ is the net input to the transform function. 

f is called transfer  function takes the input and produce output 

according to the expression like:  

 

𝑓 𝜉𝑖 =
1

1 + exp −𝜉𝑖 
                                                                (3) 

 

    A three-layer network with 6 input elements, two hidden layer 

with three neurons and an output layer were shown in figure 2. 

Superscripts indicate the source (l) connection and the destination 

(k) connection of layer weight matrices and input weight matrices. 

 

 
Figure 2: Architecture of the ANN with two hidden layer and one  

output layer 

 
 

    The first step to develop the neural network is to decide which 

training algorithm to use. The back-propagation network which is a 

powerful multilayer, feed-forward neural networks was employed 

in the present study because of allowing to network to adopt. This 

generalization property of back-propagation network makes them 

enable to train a network on a typical set of input/output pairs and 

obtain good results without training the network on all possible 

input/output pairs. Feed-forward networks often have one or more 

hidden layers of sigmoid neurons followed by an output layer of 

linear neurons. Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear and linear 

relationships between input and output vectors.   
 

There are generally four steps in the training process:  
 

1. Assemble the training data 

2. Create the network object 

3. Train the network 

4. Simulate the network response to new inputs 
 

Figure 3 shows require stages in constructing a proper network. 

 
 

Figure 3: Chart designed for ANN model 

Results and Discussion  
 

Model Validation 
 

    In order to prepare sufficient and optimized data sets for ANN 

prediction model, the simulation model results for base feed gas 

composistion is compared with actual field data. As the figure 4 

shows, the similated results are in a good agreement with field 

data. 
 

 
Figure 4: Comparison Between Field Data and Simulation Results 

 
 

ANN Results 
 

    In this paper, extensive simulation runs were carried out to 

generate sufficient output parameters to train artificial neural 

network (ANN) prediction model. The generated data divided into 

training, validation and test subsets. One fourth of the data for the 

validation set, one fourth in the test set and one half of the training 

set were taken. To achieve acceptable predictions, several neural 

network architectures were tried, and a three-layer network, with 

tan-sigmoid transfer function in the hidden layers and a linear 

transfer function in the output layer was found to give better results 

than other architectures. Optimization procedure was used to 

determine the optimum number of neurons in the hidden layer. 

After  normalizing  data,  the  optimization  process  showed  that  

network with  30  neuron numbers exhibits the best performance 

presenting acceptable R2 values in the range of 1 to 40 neurons. 

Levenberg-Marquardt function of training was employed to 

combine the speed advantage of the Gauss–Newton algorithm and 

the stability of the steepest descent method. To avoid  running  into  

local optima  instead of global optima, the network weights and 

biases reinitialized and the network retrained several times to 

provide the best solution. To reinitialize, the variable learning rate 

technique was employed to avoid local minima which allow the 

learning rate to change during the training process. An adaptive 

learning rate tries to keep the learning step size as large as possible 

whilst keeping learning stable. An adaptive learning rate needs 

some modifications in the training process. First, the initial 

network output and error are calculated. At each epoch new 

weights and biases are calculated using the current learning rate. 

New outputs and errors are then calculated. 
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    Figure 5 gives a comparison study of the predictions of this 

neural network with those of the simulation results for sweet gas 

H2S content. Although only a few sets in the input patterns were 

considered, it can be concluded that an ANN is able to predict the 

sweet gas H2S content. This is mainly attributed to the ability of 

neural networks to find nonlinear functional patterns effectively.  

 

 
Figure 5: Comparison of Simulated and Predicted values of H2S 

 in sweet gas 

 
 

    To overcome over fitting issue in the network and improve 

generalization, the early stopping method has been used. In this 

technique three subsets must be considered from the available data. 

The subsets are training set, validation set and test set. Updating 

the network weights and biases has been performed by using the 

training set. The error on the validation set is monitored during the 

training process. The validation error will normally decrease over 

the first step of training, like the training set error. However, when 

the network begins over fitting the data, the error on the validation 

set will generally start to increase. When the validation error 

increases for a specified number of iterations, the training is 

stopped, and the weights and biases at the minimum of the 

validation error are returned. The test set error is not used during 

the training, but it is used to compare different models. Figure 6 

shows data sets error. The result here is reasonable, since the test 

set error and the validation set error have similar characteristics, 

and any significant over fitting does not occurred.  

 
Epoch 

Figure 6: Training, Validation and Test Errors. 

    To perform some analysis of the network response, the entire 

data set was put through the network (training, validation and test) 

and a linear regression between the network outputs and the 

corresponding targets were performed. The network outputs are 

plotted versus the targets as square in the figure 5. The best linear 

fit is indicated by a dashed line. The perfect fit (output equal to the 

targets) is represented by the solid line. The output seemed to 

follow the target reasonably well and scattered in a straight line 

with an acceptable coefficient of determination (almost 0.9779). 

As the figures show, it can be concluded that ANN model is able to 

predict the Amine Contactor Output well which is due to the 

network capability to capture the nonlinear functional patterns 

effectively. Figure 7 shows the residual plot. In a valid regression 

analysis, the residuals should be randomly distributed around zero, 

i.e. the scatter plot of the residuals should be disordered with no 

trend.  

 
 

                                            Figure 7: Residual plot 

Conclusions 
 

    This study demonstrates the applicability of ANN to prepare 

accurate prediction model of the operational variables of an 

industrial natural gas sweetening plant which includes 

absorptioncolumn and amine regenerator column. Beside 

thegeneral advantages that are cited for ANN as an input/output 

modeling tool, the predicted data in this study showed good 

performance of artificial neuralnetworks in terms of accuracy. The 

cofficient of determination calculated for amine contactor column 

outputshowed a high accuracy of 97% that is of greatimportance if 

the predicted data are to be used for monitoring and/or control 

purposes.  
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